
 

Recall from last time
theorem Landau

Let feet with Jeff 200 and fin 0

new Then 2 15 has singularity i e not
holomorphic at s self pale

Proof

By replacing fin with finin we may
assume Telt 0

Suppose for contradiction fls is analytic at5 0
Then it is holomorphic in a neighbourhoodof 5 0
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D S Recs so U 15128

Ifi 1



We write the Taylor expansion ofLt's at5 1
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note this is convergentseries ofpositive numbers
so it can be rearranged
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But this is divergent contradiction
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by Chebyshev
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Think about these as Mertenstheorems in
arithmetic
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Perronformul.ae

one of our most important tools to relate
arithmeticproperties of feet to Lfs
Theorems Perron
Let feet Cs Galf Cso and 0 Then

Ifm is dg
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where

1m 1m if 2

2 4 f otherwise

RemarkiHere we define
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VNot true in general integralconvergesabsolutely
need to be careful
At the heartofthe theorem is the following
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We integrate along the box with vertices c it exit
rt it r it for some roo

rti r it e it

y 1ˢᵈf 58 fysdfutif.es
EIfnf If ff uti

I and II we have 1512T ly y so

1559 e

Edo far_ agy
similarly for II

For ly y 1512 r hence

15 9 Idt 25
rtit

We let r 00 this
givesthe result

Holye We apply sameargumentfor box
C IT Ct it r it r it where rs 1

THAT

KIT

IN VI

c n
s

T c it 2 E r IT



is holomorphic in this region
horizontalintegrals

here same bound as previous case and
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We are now ready toprovide a moreprecise
version ofPerron formula whichhas many
important applications
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counting square free numbers
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generalised divisor function
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